
Ventilation system 
 

A ventilation system of a room consists of a fan, an air delivery pipe, the room to be 

ventilated and some local aerodynamic losses (gaps on windows, keyholes on doors). The 

sketch of such a system is shown below. 
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The fan feeds the air delivery pipe sucking air from the ambient atmosphere (stagnation 

pressure p0) and raising the total pressure by Δptot. The total pressure rise depends on the 

volume flow rate (Q1) or mass flow rate ( 11  Qm  ) passing through the fan. Thus we have 
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The air pipe delivers the air according to the 1 dimensional unsteady Bernoulli equation 

where convective terms can be neglected. 
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or after multiplying with the density  
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The volume V of the room doesn’t change. The air density in the room ρ depends on the 

pressure ρ(pV). Thus the mass of air in the room is m = ρV. The mass is changing in time if 

more air streams into the room than out of it: 
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Here we have made use of the above mentioned barotropic ρ(pV) function. We know from 

Fluid Mechanics that the square of the sound velocity is 
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This is the equation of the room. Finally the local losses are described by supposing turbulent 

flow that is quadratic dependence of pressure drop on mass flow rate. 
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The steady state of the system can easily be found by putting the time derivatives equal zero: 

From Eq. (2) 01  EVE pp . Here the subscript E refers to equilibrium. Similarly from Eq. (3) 

021  EE mm  . Thus there is one equilibrium mass flow rate denoted by EEE mmm   21  . 

From the fan’s characteristics  EtotE mppp  01  and the local losses at steady state 

are EEVE pmpp 1

2

0    . These two equations together determine the equilibrium mass 

flow rate and room pressure:  EtotEE mpppmp   01
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equation, graphically the intersection of the fan characteristics and the local loss 

characteristics gives the equilibrium mass flow rate. 
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An important question concerns the stability of the equilibrium of the ventilation system. 

There are different – linear and nonlinear – methods to investigate stability. 

 

 

A nonlinear method originates from A. M. Liapunov.                        

 



The definition of the stability of an equilibrium point 0x of a system described by the 

ordinary differential equation (ODE)  xΦx  is:  

“The equilibrium state (trivial solution, 0x ) is stable if for any small value ε there exists a 

value δ so that if the initial value of the solution of the ODE is closer to the equilibrium than δ 

than the solution  tx  remains in a region of radius ε around the trivial solution.” Here  tx  is 

a vector-scalar function, the dot denotes differentiation with respect to time t and Φ(x) is a 

nonlinear vector-vector function. 

Liapunov’s Theorem tells that the trivial solution of the system  xΦx   is stable if there 

exists a scalar-vector Liapunov function   0xx ,V   (V = 0 only for the trivial solution) with 

a negative semi definite time derivative   0xx  ,V  according to the system.  

If   0xx  ,V  – that is V is negative definite – then the trivial solution is also asymptotically 

stable.  

The time derivative means the differential coefficient of V considering the system  xΦx  . 
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Thus starting from any initial solution close enough to the trivial solution the value of the 

positive definite Liapunov function is moving along an isolevel of V or decreasing as V is 

negative semi definite or definite. 

 

In order to apply Liapunov’s theorem the above system of algebraic and differential equations 

must be transformed into a nonlinear 2
nd

 order ODE. 

 

Now we come back to our equation system. We transform the global system Eqs. (1)-(4) with 

unknowns p1, pV, Q1, Q2 to the local one: y1, yV, q1, q2 with following definitions: 

EE

EV

V
E QQq;QQq;

pp
y;

pp
y 





 2211

111
1                


.  (6) 

Dividing Eq. (1) by ρ and subtracting the equilibrium state of the same equation we have: 
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In a similar way from Eq (2) we have 
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From Eq. (3) follows 

dt

dy

a

V
qq V

221  .           (9) 

 



Finally by subtracting from Eq. (4) the equilibrium state of this equation an linearizing we 

have 
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Now we combine Eqs. (7)-(10) and eliminate all dependent variables except q1. From now on 

time derivatives are denoted by dots above letters. Multiply Eq. (8) by L/A and differentiate it 

with respect to time t.  
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The terms must be written in the order of time derivatives: 
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The coefficients of the 1
st
 and 0

th
 derivative will be denoted by  1q  and  1qf  resulting in 

the general form of the 2
nd

 order nonlinear differential equation: 
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A “good” Liapunov function for this type of equation is 
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The time derivative of V considering Eq. (11) will be 
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 The assumptions of  Liapunov’s theorem are surely fulfilled if the 2
nd

 term in (12) is positive 

– the 1
st
 term is quadratic, thus it is always non negative. This is true if  
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and the same must be true for q1< 0.  

 

Coming back to the assumption  
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The graphical interpretation of the stability criteria are shown in the figure below. The stable 

region is below the red lines. 
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The Liapunov function for one special case has the following form. Different colors mean 

different levels of the  x,x V  function. The thick red line is  xx,V   it depends in this case 

only on x. 

 
 

Amplitude amplification of the ventilation system 

 

The above described ventilation system is fed by a fan. The pressure at the pressure side of 

the fan is never constant, not even at steady state. We may suppose, that the actual pressure 

has the form  ti

E epp


 11   where α is the amplitude of the perturbation of pressure and ω 

is its angular frequency. Physically the perturbation is nearly a real harmonic function but the 

calculation much easier if we suppose a complex harmonic function e
iωt

. As we have 

prescribed the time variation of p1(t) only Eqs. (2)-(4) are needed to get the answer of the 

system: 
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We differentiate (3) with respect to time and substitute the time derivatives of the mass flow 

rate from (2) and (4). To do the letter we find from (4): 
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We use again do dots for derivatives of the pressure in the room. The above equation reads 

after multiplying it with L/A: 
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One can look for the pressure in the room in a similar perturbed form as p1 has been 

prescribed:  ti
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and magnitude. The absolute value of the ratio of β to α is the amplification of the ventilation 

system and the phase shift can be calculated too. Differentiating  ti
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First drop the underlined terms then shorten by the twice underlined exponential function as it 

is never zero! 
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The Helmholtz-frequency 
VL

Aa
H

2

  has been introduced. The absolute value of the 

complex amplification is denoted by G(ω), it is 
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The black line in the above figure is the graph of Eq. (18). The red line is the graph of a 

simple Helmholtz resonator – when the second term in the denominator in (18) is zero – with 

the Helmholtz resonator frequency as defined on the top of this page. If H   then the 

amplification of an undamped resonator goes to infinity. 

 

The phase angle between excitation and the answer of the system is 
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This is shown in the next figure, a phase jump of about 180° is seen at the Helmholtz 

frequency. 
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